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Stock price prediction has attracted much attention from both practitioners and researchers. However,
most studies in this area ignored the non-stationary nature of stock price series. That is, stock price series
do not exhibit identical statistical properties at each point of time. As a result, the relationships between
stock price series and their predictors are quite dynamic. It is challenging for any single artificial tech-
nique to effectively address this problematic characteristics in stock price series. One potential solution
is to hybridize different artificial techniques. Towards this end, this study employs a two-stage architec-
ture for better stock price prediction. Specifically, the self-organizing map (SOM) is first used to decom-
pose the whole input space into regions where data points with similar statistical distributions are
grouped together, so as to contain and capture the non-stationary property of financial series. After
decomposing heterogeneous data points into several homogenous regions, support vector regression
(SVR) is applied to forecast financial indices. The proposed technique is empirically tested using stock
price series from seven major financial markets. The results show that the performance of stock price pre-
diction can be significantly enhanced by using the two-stage architecture in comparison with a single
SVR model.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Stock price prediction is an important financial subject that has
attracted researchers’ attention for many years. In the past, con-
ventional statistical methods were employed to forecast stock
price. However, stock price series are generally quite noisy and
complex. To address this, numerous artificial techniques, such as
artificial neural networks (ANN) or genetic algorithms are pro-
posed to improve the prediction results (see Table 1). Recently,
researchers are using support vector regressions (SVRs) in this area
(see Table 1). SVR was developed by Vapnik and his colleagues
(Vapnik, 1995). Most comparison results show that prediction per-
formance of SVR is better than that of ANN (Huang, Nokamori, &
Wang, 2005; Kim, 2003; Tay & Cao, 2001a). Reasons that are often
cited to explain this superiority include the face that SVRs imple-
ment the structural risk minimization principle, while ANNs use
the empirical risk minimization principle. The former seeks to min-
imize the misclassification error or deviation from correct solution
of the training data; whereas the latter seeks to minimize the
ll rights reserved.
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upper bound of generalization error. Solution of SVR may be global
optimum while neural network techniques may offer only local
optimal solutions. Besides, in choosing parameters, SVRs are less
complex than ANNs.

Although researchers have shown that SVRs can be a very useful
for stock price forecasting, most studies ignore that stock price ser-
ies are non-stationary. That is, stock price series do not exhibit
identical statistical properties at each point of time and face dy-
namic changes in the relationship between independent and
dependent variables. Such structural changes, which are often
caused by political events, economic conditions, traders’ expecta-
tions and other environmental factors, are an important character-
istic of equities’ price series. This variability makes it difficult for
any single artificial technique to capture the non-stationary prop-
erty of the data. Most artificial algorithms require a constant rela-
tionship between independent and dependent variables, i.e., the
data presented to artificial algorithms is generated according to a
constant function. One potential solution is to hybridize several
artificial techniques. For example, Tay and Cao (2001b) suggest a
two-stage architecture by integrating a self-organizing map
(SOM) and SVR to better capture the dynamic input–output rela-
tionships inherent in the financial data. This architecture was orig-
inally proposed by Jacobs, Jordan, Nowlan, and Hinton (1991), who
were inspired by the divide-and-conquer principle that is often

mailto:spolo@chu.edu.tw
mailto:JJ.Hsieh@inet.polyu.edu.hk
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


x
x

x

x
x

x

x

x

x

x
x

x

x
x

x

x

x

x ⊕

⊕

⊕

ξ

ε

⊕

Fig. 1. Approximation function (solid line) of the SVR using an e–insensitive zone
(the area between dotted lines).

Table 1
Previous research result.

Research Comparison algorithms Experimental data Results

Tay and Cao (2001a) Back-propagation neural network (BPN) and SVR Futures and Bonds SVR forecasts better than the BPN
Kim (2003) BPN and SVR Korea composite stock

price index
SVR forecasts better than the BPN in terms of
movement direction

Huang et al. (2005) SVR, Linear Discriminant analysis, Quadratic discriminant
analysis, and Elman BPN

Japan NIKKEI 225 Index SVR forecasts better than other techniques in terms
of movement direction

Pai and Lin (2005) Hybrid model of ARIMA and SVM Ten company stocks The hybrid model forecasts better than SVR and
ARIMA

Wittkemper and
Steiner (1996)

Neural networks whose topologies were optimized by
genetic algorithm

Sixty-seven German
stocks

The new topology can yield good forecast results
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used to attack complex problems, i.e., dividing a complex problem
into several smaller and simpler problems so that the original
problem can be easily solved. In the two-stage architecture, the
SOM serves as the ‘‘divide” function to decompose the whole finan-
cial data into regions where data points with similar statistical dis-
tribution are grouped together. After decomposing heterogeneous
data into different homogenous regions, SVRs can better forecast
the financial indices. Although this architecture is interesting and
promising, Tay and Cao (2001b) tested the effectiveness of the
architecture only on futures and bonds. Whether the architecture
can be employed for stock price prediction remains to be
answered.

This study aims to test the effectiveness of the architecture for
stock price prediction by comparing the predictive performance of
the two-stage architecture with a single SVM technique. Seven
stock market indices were used for this study. This paper consists
of five sections. Section 2 introduces the basic concept of SVR, SOM
and the two-stage architecture. Section 3 describes research design
and experiments. Section 4 presents the conclusions.

2. Methodology

2.1. Support vector machine

Support vector machine (SVM) is originated as an implementa-
tion of Vapnik’s (1995) structural risk minimization (SRM) princi-
ple, which reduces empirical risk, based on bounds of
generalization error. The fundamental concept in SVM is to trans-
form the data into a higher dimensional space and to find the opti-
mal hyperplane in the space that can maximize the margin
between classes. The simplest SVM only deals with a two-class
problem, in which the data is separated by a hyperplane defined
by a number of support vectors. Support vectors are a subset of
the training data used to define the boundary between two classes.
As a result, support vectors contain all of the information needed to
define the classifier. This property makes SVM highly insensitive to
the dimensionality of the feature space.

2.2. Support vector regression

Support vector regression is closely related to SVM classifiers in
terms of theory and implementation. Vapnik (1995) introduced the
e–insensitive zone in the error loss function. From a theoretical
point of view, this zone represents the degree of precision at which
the bounds on generalization ability apply. Training vectors that lie
within this zone are deemed correct, whereas those outside this
zone are deemed incorrect and contribute to the error loss func-
tion. These incorrect vectors become the support vectors (see
Fig. 1). Vectors lying on and outside the dotted lines are support
vectors, whereas those within the e–insensitive zone are not
important in terms of the regression function. The regression sur-
face then can be determined only by support vectors.
Fundamentally, SVR is linear regression in the feature space.
Although it is simple and not very useful in real-world situations,
it forms a building block for understanding complex SVRs. Detailed
discussions of SVMs and SVRs have been given by Burges (1998),
Cristianini and Shawe-Taylor (2000), and Smola and Scholkopf
(1998).

Given set of training data {(x1,y1), . . ., (xl, yl)} � X � R, where X
denotes the space of input patterns. The goal of SVR is to find a
function f(x) that deviates not more than e from the targets yi for
all the training data, and at the same time, is as flat as possible.
Let linear function f(x) takes the form:

f ðxÞ ¼ wT xþ b with w 2 X; b 2 R ð1Þ

Flatness in (1) means smaller kwk. The problem can then be for-
mulated as

min 1
2 wk k2

s:t:
yi �wT xi � b 6 e
wT xi þ b� yi 6 e

�
ð2Þ

However, not all problems are linearly separable. To cope with this
issue, non-negative slack variables, ni; n

�
i , are introduced to deal

with the otherwise infeasible constraints of optimization problem
(2). The new formation is then stated as

min 1
2 kwk

2 þ C
Pl

i¼1
ðni þ n�i Þ

s:t:
yi �wT xi � b 6 eþ ni

wT xi þ b� yi 6 eþ n�i
ni; n

�
i P 0

8><
>:

ð3Þ

The constant C determines the trade-off of error margin be-
tween the flatness of f(x) and the amount of deviation in excess
of e that is tolerated. To enable the SVR to predict a nonlinear sit-



Fig. 3. SOM algorithm.
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uation, SVR maps the input data into a feature space. The mapping
of X into the feature space F is denoted by

U : Rn ! F

x#UðxÞ

The decision function can be computed by the inner products of
U(x)TU(xi) without explicitly mapping x into a higher dimension,
which saves considerable computation efforts. U(x)TU(xi) is then
called kernel function K(x,z) �U(x)TU(z).

2.3. Self-organizing map

SOM was first introduced by Kohonen (1995) and has attracted
substantial research interest in a wide range of applications. For
example, SOM has been shown to be quite effective in organizing
large amounts of text data (Kohonen et al., 2000; Yang, Chen, &
Hong, 2003). In essence, SOM is an unsupervised learning method
that clusters objects having multi-dimensional attributes into a
lower-dimensional space. The objective of SOM is to maximize
the degree of similarity of patterns within a cluster, minimize
the similarity of patterns belonging to different clusters, and then
present the results in a lower-dimensional space.

The SOM network is a fully connected network, containing two
layers of nodes – an input layer and an output layer. The output
layer is usually in the shape of a two-dimensional grid, acting as
a distribution layer. The number of nodes in the input layer is equal
to the number of features associated with the input. Each output
node has the same number of features as the input nodes. The in-
put layer, as well as each output node, can be represented as a vec-
tor that contains the number of features of the input. The topology
of the Kohonen SOM network is shown in Fig. 2.

The SOM technique is based on the associative neural properties
of the brain in that regions of neurons are operating in a central-
ized and localized manner to achieve tasks (Smith & Gupta,
2000). To replicate the whole process of human brain in SOM,
the learning process of SOM is as follows: when an input pattern
is presented to SOM, the winning node, defined as one whose
weights are most similar to the input vector, receives the most
learning by strengthening its weights. Weights of the surrounding
neurons are also strengthened a little so that this area is more
likely to fire up when a similar input pattern is presented next
time. The localized manner in SOM is implemented by adjusting
two parameters: the neighborhood size and the learning rate. Let
us denote R(t) as the neighborhood size and g(t) as the learning
rate for weight update. The amount of learning of each neuron is
determined by

gðtÞe
�d
RðtÞ ð4Þ

When we let these two parameters – R(t) and g(t) – reduce over
time, we observe that Eq. (4) will slowly decrease and the weight-
Input Layer – each node a vector

Kohonen Layer

Fig. 2. Kohonen SOM topology.
updating process will gradually stabilize. Eq. (4) also shows that
the amount of learning is the highest at the winning neuron, and
decreases as the distance between a neuron and the winning neu-
ron increases. This process of weight-updating will be performed
for a specified number of iterations. The detailed steps of the algo-
rithm are presented in Fig. 3.

2.4. A two-stage architecture

A time series is a sequence of data points recorded sequentially
in time. Time series forecasting is to predict future values based on
past values and other variables. One problem in financial time ser-
ies forecasting is that time series are non-stationary. The non-sta-
tionary property implies that the statistical distributions of a time
series can change over time. This change may be caused by eco-
nomic recession or growth, or political or environmental events.
The non-stationary property will lead to a gradual change in the
relationship between independent and dependent variables, i.e.,
the time series may have different predictor functions in different
time periods. However, most learning algorithms require a con-
stant relationship between independent and dependent variables
(Cao & Gu, 2002). As a result, it is challenging to predict such struc-
tural changes of financial time series.

To address this issue, this study employs a two-stage architec-
ture to better predict financial indices (see Fig. 4). In the first stage,
the SOM is used to decompose the whole input space into regions
where data points with similar statistical distributions are grouped
together, so as to capture the non-stationary property of financial
series. After decomposing heterogeneous data points into different
homogenous regions, SVMs can then better forecast the financial
indices. As demonstrated by Tay and Cao (2001b), this two-stage
architecture can capture the dynamic input–output relationship
inherent in futures and bonds prediction. However, whether the
architecture can be used for stock price prediction remains to be
answered.
SOM

Stock price
data

SOM regions 1

SOM regions 2

SOM regions n

SVR
Data pre-processing
for SVR

SVR

SVR

Data pre-processing
for SVR

Data pre-processing
for SVR

Final
result

Stage 1 (Divide):
Data clustering

Stage 2 (Conquer):
SVR prediction

Fig. 4. The two-staged architecture.



Table 3
Performance metrics and their calculation.

Metrics Calculation

NMSE NMSE ¼ 1=ðd2nÞ �
Pn

i¼1ðai � piÞ
2

d2 ¼ 1=ðn� 1Þ �
Pn

i¼1ðai � aÞ2

MAE MAE ¼ 1=n �
Pn

i¼1jai � pij
DS DS ¼ 100=n �

Pn
i¼1di

di ¼
1 ðai � ai�1Þðpi � pi�1ÞP 0
0 otherwise

�

WDS WDS ¼
Pn

i¼1dijai � pij=
Pn

i¼1d0ijai � pij

di ¼
0 ðai � ai�1Þðpi � pi�1ÞP 0
1 otherwise

�

d0i ¼
1 ðai � ai�1Þðpi � pi�1ÞP 0
0 otherwise

8<
:
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3. Results

3.1. Data sets

We examined seven major stock market indices in this study,
including the Nikkei 225 (NK), the All Ordinaries (AU), the Hang
Seng (HS), the Straits Times (ST), the Taiwan Weighted (TW), the
KOSPI (KO), and Dow Jones (DJ). Data were collected mostly from
Yahoo Finance. Daily closing prices were used. The whole data
set covers the period from July 1, 1997 to May 31, 2002. We believe
that the time periods cover many important economic events,
which are sufficient for testing the issue of non-stationary proper-
ties inherent in financial data.

3.2. Data processing

Original closing price was transformed into four-lagged relative
difference in percentage of price (RDP), including RDP�5, RDP�10,
RDP�15 and RDP�20 and one transformed closing index (EMA15).
EMA15 was obtained by subtracting a fifteen-day exponential
moving average from the closing indices. Input variables include
RDP�5, RDP�10, RDP�15, RDP�20, and EMA15. According to Tay
and Cao (2001a), this transformation can make the distribution
of the data more symmetrical, thus improving the predictive
power of artificial methods. The output variable RDP+5 is obtained
by first smoothing the closing index with a three-day exponential
moving average, because the application of a smoothing transfor-
mation to the dependent variable generally enhances the predic-
tion performance of artificial methods. The calculations for all
variables can be found in Table 2.

RDP values that lie beyond ±2 standard deviations were first
identified as outliers and then replaced with the closet marginal
values. About 80% of the data was used for training, and 20% for
testing. Data were scaled into the range of [�0.9,0.9] to normalize
each feature component so that larger input attributes do not over-
whelm smaller inputs.

3.3. Performance criteria

The prediction performance is evaluated using the following
statistical methods: normalized mean squared error (NMSE), mean
absolute error (MAE), directional symmetry (DS) and weighted
directional symmetry (WDS). The definitions of these criteria can
be found in Table 3. NMSE and MAE are the measures of the devi-
ation between actual values and predicted values. The smaller the
values of NMSE and MAE, the closer are the predicted time series
values in relation to the actual values. Although predicting the ac-
tual levels of price changes is desirable, in many cases, the direc-
tion of the change is equally important. DS provides the
correctness of the predicted direction of RDP+5 in terms of per-
centage; and the large values of DS suggest a better predictor.
WDS measures the magnitude of the prediction error as well as
the direction. It penalizes errors related to incorrectly predicted
directions and rewards those associated with correctly predicted
Table 2
Input and output variables.

Input variables Calculation

EMA15 pðiÞ � EMA15ðiÞ
RDP�5 (p(i)-p(i-5))/p(i � 5)*100
RDP�10 (p(i)-p(i � 10))/p(i � 10)*100
RDP�15 (p(i)-p(i � 15))/p(i � 15)*100
RDP�20 (p(i)-p(i � 20))/p(i � 20)*100

RDP+5 ðpðiþ 5Þ � pðiÞÞ=pðiÞ � 100
pðiÞ ¼ EMA3ðiÞ
directions. The smaller the value of WDS, the better is the forecast-
ing performance in terms of both magnitude and direction.

3.4. SOM implementation

The determination of the size of SOM is not an easy task, be-
cause the statistical properties of the data are not always available.
To avoid the trial-and-error process of determining the size of the
SOM map, researchers have proposed several methods for auto-
determination (Dittenbach, Rauber, & Merkl, 2002; Fritzke, 1995).
Those networks can automatically determine the map size that is
suitable for the specific data distribution at hand. Therefore, this
study employs the growing hierarchical self-organizing map
(GHSOM), developed by Dittenbach et al. (2002). GHSOM is a
SOM technique which automatically grows the map size both in
a hierarchical and horizontal way. Thus, besides basic parameters
(e.g., learning rate and neighborhood range), GHSOM needs extra
parameters, including the initial map size, the horizontal growing
parameter, and the hierarchical growing parameter. We set the ini-
tial map size at 2 � 2 units and let the GHSOM determine the best
map size. Horizontal and hierarchical growing parameters can sug-
gest GHSOM when to stop growing horizontally and/or hierarchi-
cally. We set horizontal growing parameter at 0.05 and
hierarchical growing parameter at 1. Some partitions of GHSOM
may involve very few data. One characteristic of the SOM is that
similar types of input data are mirrored to a large extent by their
geographical vicinity within the representation space. Thus, when
some partitions have very few data (n < 30), we merge the data
into their neighborhood partitions.

3.5. SVM implementation

The typical kernel functions are the polynomial kernel k(x,y) =
(x � y + 1)d and the Gaussian kernel kðx; yÞ ¼ expð�ðx� yÞ2=d2Þ,
where d is the degree of the polynomial kernel and d2 is the band-
width of the Gaussian kernel. In our experiment, we chose the
Gaussian kernel as our kernel function because it tends to achieve
better performance. Tay and Cao (2001a) showed that SVRs are
insensitive to e, as long as it is a reasonable value. Thus, we choose
0.001 for e. In determining the kernel bandwidth d2 and the margin
C, tenfold cross validation technique was used to choose parame-
ters that yield the best results. Subsequently, this set of parameters
was applied to the test data set. The parameters tried in the tenfold
cross validation process were d2 2 {2,1,0.5,0.1,0.01,0.001,0.0001}
and C 2 {1000,750,500,100,50,2}. A SVM implementation called
LIBSVM was used in this work. We used the LIBSVM because it uses
the state-of-the-art optimization method.2
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Table 4
Prediction performance of the two-stage architecture and the single SVM.

NMSE MAE DS WDS

NK SVR + SOM 1.165 0.216 55.80 0.847
SVR 1.283 0.242 50.83 0.893

AU SVR + SOM 1.078 0.132 53.36 0.850
SVR 1.091 0.142 50.85 0.900

HS SVR + SOM 0.913 0.101 59.07 0.805
SVR 0.963 0.117 37.50 1.653

ST SVR + SOM 0.949 0.082 53.94 1.002
SVR 1.053 0.096 34.98 1.621

TW SVR + SOM 1.006 0.156 51.35 0.957
SVR 1.434 0.239 48.31 1.223

KO SVR + SOM 1.013 0.143 53.53 1.095
SVR 1.032 0.157 40.60 1.507

DJ SVR + SOM 1.055 0.138 50.63 1.006
SVR 1.186 0.160 47.35 1.088
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3.6. Results

The results of the two-stage architecture and the single SVM
model are shown in Table 4. In terms of NMSE, MAE and WDS,
we observe that the two-stage architecture achieves smaller values
than the single SVM model does, on the test data set. This suggests
that the two-stage architecture can have smaller deviations be-
tween predicted and actual values than the single SVM model.
The values of DS are larger in the two-staged architecture than in
the single SVM model. This suggests that in terms of correctness
of the predicted direction of RDP+5, the two-stage architecture of-
fers better prediction. The results are consistent in all seven data
sets. A paired t-test is also performed to check whether there is sig-
nificant difference in the four performance criterion between the
two methods. The calculated t-value for NMSE, MAE, DS, and
WDS are 2.28 (p < 0.1), 2.73 (p < 0.05), 3.10 (p < 0.05), and 2.81
(p < 0.05), respectively. This shows that the two-stage architecture
outperforms the single SVM model. The findings are compatible
with the conclusions by Tay and Cao (2001b).

4. Conclusion

The study shows that the performance of stock price prediction
can be significantly enhanced by using the two-stage architecture
in comparison with a single SVM model. The results may be attrib-
utable to the fact that financial time series are non-stationary and,
therefore, the two-stage architecture can better capture the char-
acteristics by decomposing the whole financial series into smaller
homogenous regions. After decomposing the data, SVRs can better
predict financial indices. The results suggest that the two-stage
architecture provides a promising alternative for financial time
series forecasting. Future research can further testing the idea of
the two-stage architecture on other non-stationary data to evalu-
ate the generalizability of the architecture.
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